A New Sensor Fault Diagnosis Technique Based Upon Subspace Identification and Residual Filtering
نویسندگان
چکیده
This paper presents a new methodology for designing a detection, isolation, and identification scheme for sensor faults in linear timevarying systems. Practically important is that the proposed methodology is constructed on the basis of historical data and does not require a priori information to isolate and identify sensor faults. This is achieved by identifying a state space model and designing a fault isolation and identification filter. To address time-varying process behavior, the state space model and fault reconstruction filter are updated using a two-time-scale approach. Fault identification takes place at a higher frequency than the adaptation of the monitoring scheme. To demonstrate the utility of the new scheme, the paper evaluates its performance using simulations of a LTI system and a chemical process with time-varying parameters and industrial data from a debutanizer and a melter process.
منابع مشابه
Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملVariable Speed Wind Turbine DFIG Back to Back Converters Open-Circuit Fault Diagnosis by Using of Combiniation Signal-Based and Model-Based Methodes
Condition monitoring (CM) and Fault Detection (FD) of wind turbine lead to increase in reliability and availability of turbine. IGBT open circuit of wind turbine converter will bring about depletion in output current of converter and as a result, reduction in production of wind turbine power. In this research, back to back converter IGBT open - gate fault for wind turbine based on DFIG is detec...
متن کاملIdentification and Robust Fault Detection of Industrial Gas Turbine Prototype Using LLNF Model
In this study, detection and identification of common faults in industrial gas turbines is investigated. We propose a model-based robust fault detection(FD) method based on multiple models. For residual generation a bank of Local Linear Neuro-Fuzzy (LLNF) models is used. Moreover, in fault detection step, a passive approach based on adaptive threshold is employed. To achieve this purpose, the a...
متن کاملSubspace aided data-driven design of robust fault detection and isolation systems
This paper deals with subspace method aided data-driven design of robust fault detection and isolation systems. The basic idea is to identify a primary form of residual generators directly from test data and then make use of performance indices to make uniform the design of different type robust residuals. Four algorithms are proposed to design fault detection, isolation and identification resi...
متن کامل